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PROJECTION FILTERS FOR MODAL PARAMETER ESTIMATE
FOR FLEXIBLE STRUCTURES
By

Jen-Kuang Huang! and Chung-Wen Chen?2

ABSTRACT

Single-mode projection filters are developed for eigensystem parameter
estimates from both analytical results and test data. Explicit formu]gtions
of these projection filters are derived using the pseudoinverse matrices of
the controllability and observability matrices in the general sense. A
global minimun optimization algorithm is developed to update the filter
parameters by using interval analysis method. Modal parameters can be
attracted and updated in the global sense within a specific region by pass-
ing the experimental data through the projection filters. For illustration
of this new approach, a numerical example is shown by using a one-dimen-

sional global optimization algorithm to estimate modal frequencies and

dampings.
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Introduction

The problems of deriving control algorithms and state estimators for
maneuvering flexible structures have been investigated by many researchers in
recent years. The control design demands an accurate model of the system
dynamics which will adequately describe the system's behavior. System
jdentification methods use experimental measurements to estimate dynamic
properties such as natural frequencies, damping factors, mode shapes’and modal
masses which are referred to as modal parameters. Several different time-
domain and frequency-domain methods are possible for the identification of
structures. Various techniques may share the same mathematical foundation via
system realization theoryl. However, most techniques do not account
explicitly for the factors which will affect the actual performance in
practice significantly. These factors include nonlinearities, local modes,
and system and measurement noises. In order to achieve the final purpose of
identification, i.e., control of flexible structures, an on-line estimation
technique needs to be developed. This technique may provide updated modal
parameter estimates only for specific regions needed to be controlled. On the
other hand, modal parameters can also be identified by using the analytical
finite element method. The result is usually used only for the comparison
with the experimental one. However, the analytical result may provide

valuable initial estimate for modal parameters for an on-line estimator.

For 1linear time-invariant systems, optimal model-reduction and state
estimation has been developed via optimal projection equations based on
modified Riccati and Lyapunov equationsz. Other filtering approaches in both
time and frequency domains are easy to implement and effective in rejecting

uncorrelated measurement noise from simulated data3. Although filtering

approaches are not restricted to linear éystems, time-domain filters usually
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involve unacceptable computational burden for multi-mode system 1like large

flexible structure,

The objective of this paper is to introduce simple projection filters for
modal state estimate. These filters are formulated with a single mode only
and their explicit expressions can be derived using the pseudoinverse of the
controllability and observability matrices in the general sense. Filter
parameters are initially implemented from the analytical mbde] and ﬁpdated by
real data using a global minimum optimization algorithm. The global minimum
optimization algorithm is developed by using interval analysis method. Since
the filters are developed in modal space, system modal parameters within a

specific region are, as a by-product, identified.

Finally, a numerical example for a ten-mode structure 1is given to
illustrate this new method. A one-dimensional global optimization algoritm is
also developed and guarantees to find the smallest value of a cost function

throughout a specific closed region of modal parameters.

Projection Filters Formulations

The projection filters are developed based on system realization
theory. A finite-dimensional, linear, time-invariant dynamic system can be

represented by the state-variable equations in discrete-time form:

x{k+1)

A x(k) + B u(k) (1)

y(k)

C x(k) (2)

where x is an n-dimensional state vector, u 1is an m-dimensional control or
input vector, and y is a p-dimensional measurement or output vector. The

integer k 1is the sample . indicator. For flexible structures, the state



transition matrix A 1is a representation of mass, stiffness, and damping
properties. The control influence matrix B charaterizes the locations and
type of input control vector u. The measurement influence matrix C describes
the relationship between the state vector x and the output measurement vector

y, and characterizes the mode shapes of the system.

For the state-variable Egs. (1) and (2) with free pulse response, the

time domain description is given by the function known as the Markov‘parameter
Y(k) = ca Kl g (3)

or in the case of initial state response

where x{0) represents the initial conditions of state vector and k 1is an
integer. The functions Y(k) can be obtained from the experimental data and

used to form the (r+l) by (s+1) block data matrix (generalized Hankel matrix)

~ | ~
Y(k) Y(k+t1) veeees Y(k+t )
S
H(k_l) = Y(j}"'k) Y(jl+‘f+tl) .‘..Y(jl+'.<+ts) (4)
Y(J'r.+k) Y(jr+k+t1) ""Y(jr+k+ts)
~ /

where j;(i=1,...,r) and t;(i=l,...,s) are arbitrary integers. For the system
with initial state response measurements, simply replace H(k-1) by H(k).

From Eqs. (3) and (4), it can be shown that

- koo
H(k) = Vr A NS, r C




and
Byevus A ° B8] (5)

where V. and Wy are generalized observability and controllability matrices.
The dimensions of V. and W are (r+l)p x n and n x m(s+l) respectively. Now

observe that
H(D) = vr ws . (6)

we can derive

# #
Vr H(O0) WS =1 (7)

n

where Vﬁ and wﬁ are the pseudoinverse matrices of Vr-and ws respectively

in a general sense. I, is an identity matrix of order n. Now, instead of
having the matrix Vﬁ and wﬁ Tor n-dimensional multi-mode system, we develop
simpler forms of V# and w# which represent the pseudoinverse matrices of
respective generalized observability and controllability matrices derived from
a single-mode model only. Note that vt and W are rectangular matrices with
dimensions (r+l)x2 and 2x(s+l), respectively. = The general explicit
expressions of V# and w? will be derived later. The matrices vt and w#, which
are formulated only for specific modes of interest from the analytical
results, will be used as the left and right projection filter respectively.
The Hankel matrix H(0), which is formed by experimental data, will then run
through the projection filters to attract the system modal parameters. If the
projection filters have the same modal characteristics as the actual system

does, then from Eq. (7) we have
vy Wt - ' (8)

where I, is a 2x2 identity matrix. Otherwise, we have




v Hio) wt = 0 (9)

This indicates that the modal parameters of the projection filters are
different from those of the actual system. The projection filters should be
tuned in order to match the actual modes. The algorithm for filter update is

developed in the next section.

Now, the explicit expressions of the projection filters vt and_w? can be
derived as follows. A single mode, continuous-time, linear, time-invariant

dynamical system has the state-variable equations in modal space

x+8u ‘ (10)

xXe
L]
=0

y =C x (11)

x g
{_w ‘;] (12)

where w is the modal frequency and o is the damping. The corresponding

with

>
0]

discrete-time system can be represented by Egs. (1) and (2) with

-cT -oT

e cosuwl e sinwl
T -e“c’T sinwl e—c’T coswl (1)
and
by
B= |, C = [c1 c,] (14)

where T is the sampling time and b; , by, c;, ¢, are scalars. From Eq. (5)

with jo = t; = 0




d .
i)
CA ©
J)
Vo= CA = [c2 Vilr) + e v, (r), - cp Vi(r) + ¢, Vy(r)]
"
caA '’
NG /
T T
¢ tl ¢ b2 V3(s) + bl V4(s)

where -
VI(r) = (.., e !

1}

T T
bl V3(s) + b2 V4(s)

sin(jin),...]

cos(j;ul),... ]

T, =JjoT
Vz(r) - [o ’ e
with i=0,1, 2,..., 1

-t oT
T ) _ g
Vals) = [L.., -e s

-t of

VZ(S) =[..., e

with k =0, 1, 2,...,s
Assume we choose ji' ty as follows
I = dpei = 45 1=

tg = tog =

[l
t
~
~
1]

Then, the projection filters, v and

expressions (see Appendix for proof):

in(tkwT),...]

cos(t wl),...]

0,

0,

w#

1, 2,..., integer [E]

1, 2,..., integer [;]

» may have the following

(17)

(19)

(20)

(21)

(22)

explicit
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1 # #
m (CZ Va(r) + C1 Vb (r))
- 1%

TR (23)
g (e v r) v e, v )
~ e
# 1 # #oonT 1 # #,.03T
W' = (=b, V'(s) + b, V' (s))', (b, VI(s) + b, V'(s)) (24)
[2+b2 2 ¢ 17d b2+b2 1l ¢ 2 'd ]
2 172
where
Jj.oT  sin(j,oT) sin ((j.-j.)wT)
viir) = [ee, e (- ! (et + L ) - —
a 2 klt?ff xz(r7’ 2
(tr = —2),...] (25)
j.oT  cos(j,wT) cos{(j.=J;)wT)
# _ ;9 i 1 1 r v
1 .1
(,\1“,7 ToTr] sen.] (26)
with i =0,1,2,...,r
and
t ol sin(t, wT) sin ((t_ = t )wT)
#ooy S k 1 1 } s~ %
Vels) = [, e ® o 7 (x3(57 EnoR 2
1 1
(x3(sr" k4(57))""] (27)
t, oT cos(t, wl) cos{(t -t )uwT)
# N k k 1 1 s 'k
Vg(s) = [ecn e (— (A3(57 * x4(§T) ¥ 7

l 1 /
(m‘m)),...] \,‘8)

v o e ki -



with k =0, 1, 2,..., S

xl(r) and kz(r) are the eigenvalues of vIv, and x3(s) and x4(s) are the

eigenvaiues of WWT. Xl(r), Kz(r), My(s) and A, (s) can be derived as

follows
' _ 1+m+Y (m) if r is even
MO = () if ris odd - (29)
xz(r) = m=Y(m) : (30)
with
g if r is even m-1
m={ , Y(n) = T cos((§.=2§;)uT) (31)
- if r is odd i=0
_ g1+ +Z(n) if s is even
K3(S) - {n+Z(n) if s is odd (32)
A4(s) = n-Z(n) (33)
with
% if s is even n-1
n = {$+1 . Z{n) = ¢ cos((ts-Ztk)mT) (34)
-5 if s is odd k=0

Note that V¥ and W' are rectangular matrices with dimensions 2x(r+l) and

(s+1)x2 respectively.

Filter Update

In order to update the projection filters to attract the actual modes

from experimental data within a specific range of accuracy, a cost function is

formed as follows:

o
n
™
=
[ et
——
w
o
o



where
T _
U = [E)ys Epps Eyps Eppl
and
E £
E11 E12 v o) wf - L
12 Ea

From Eq. (8), the cost function J would go to a minimum value (ideally, zero)
when the projection filters have the same modal characteristics as'the actual
system does. On the other hand, for a specific region of system parameters of
interest, we may update those system parameters of the projection filters
within the specific region so that the cost function is_g]oba]]y minimized.
This global minimum of the cost functicn in the specific region will provide
the best estimates for the system parameters of the actual system. A]thoggh
the cost function may be corrupted by the system or the measurement noise, the
system parameters corresponding to the global minimum are expected to be quite
insensitive to the noise if the noise is not particularly correlated to those

parameters we estimate.

Interval Analysis: Global Minimum Optimization

The method for computing a global minimum within a specific region of
system parameters is based on the algorithm developed by Hansens's.‘ Al though
this algorithm can deal with problems in the multi-variable case with
inequality constraintss, only single variab]e5 (either modal frequency or
modal damping) is considered here. The g]oba] optimization algorithm basically
uses a Newton method® in conjunction with the interval analysis to solve a
system of nonlinear equations. The term "global minimum" used herein refers
to the smallest valu~ of the cost function J throughout a closed interval of a

system parameter. decause of the 1interval analysis, the computatinal



10

procedure of this algorithm requires explicit expressions of the first
derivative (J') and the second derivative (J'') of the cost function J shown
in Eq. (35). This can be easily derived by using the explicit expressions for
the modal filters shown in Eqs. (23) and (24). The algorithm developed by

5

Hansen” has been slightly modified and summarized as follows:

This

Initial Step: The algorithm starts with an initial interval X,.
interval is equally éubdivided into subintervals which are stored in a list
Lg. A list L; (initially empty) consists of intervals for which the width is
smaller than a specified value w; and the corresponding width of J is smaller
than a specified value LPY Let x denote a feasible approximation to the
global minimum. If the feasible point is not given, the upper limit of the
cost function is set to J == with X indefinite. Let [jL, jR],
[ji, jé] and [ji', jé'] denote the interval resulting from evaluating J,
J' and J'' in interval arithmatic using the argument X, respectively; that is

IO = L3 dgls (X = L, §ds 37100 = 4", dy'] (36)

and X =[x, xl

Then, use the interval analysis to find the corresponding J, J' and J'' for

all the subintervals in LO.

Main Steps:

1. If the list Ly is empty, go to step ll. Otherwise, find the subinterval

X in Lo for which the left endpoint of J(X), i.e. j, is smallest.

2. If xe X, set x =X. Otherwise, set x=m{X) = midpoint of X. If

'jL > J, the cost of any point inside the intervals in Lo exceeds the

upper 17 it 3.  Then Ly is set empty and go to step 11,



..,,..«...

A
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Concavity check.

If jé' < 0, J is concave in X and cannot have a minimum in the interior

of X. Then, X is deleted and go to step 1.

Monotonicity Check

If Jp<0 or j >0, the gradient of J is strictly positive or

strictly negative over X. Then, X is deleted and go to step 1. .

Gaussian elimination

Denote E = J - J(x), A = [J'(x)]2 + ZEJL'
If jL' >0 and A>0, ¢ implies that J(y)>J for any y e X. Then, X
is deleted and go to step L. Note that this is trué only for jt' > 0,

which is not indicated in =f, 5,

Interval Newton Method®

If jL' > 0, denote S' = x - J3'(x)/3''(X) and S = intersection of S'
and X. Otherwise, denote S = S; U S,

Here S; and S, are defined as follows:

X = J'(x)/ji' for j/ ' # 0.

#

Denote ¢

and d=x - Jd'(x)/ig" for jp' # 0.

[xL, d] vhen jR >0 and d>xL

If J'(x)>0 S, = {empty when j5'=0 or d<x,

[c, xR] when j£'<0 and c<xg

s2 B empty when j£'=0 or e>xp

[x,, ¢] when j '<0 and c>x

If J'(x)<0 S, =] & L L
1 empty when JL =0 or c<xy.

o - [d, xgl  when jp >0 and d<x

2 " Uempty when j§'=0 or d>xp
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11,

12,

12

If S is empty, go to step 1. If S=X, then split X in half,

For each new generated subinterval X = S1 or 52, repeat steps 3 and 4,

Update J

~

For each new subinterval X, denote

wlX] = width of i, x = mid [X] = midpoint of X

A

X = [xL, xR] and J(X) = [jL, jR]

If J(x)<J, simply replace J by J(x) or conduct a line search to
reduce J as follows:

~ A A ~

a. If J'(;)>O, denote Xy = X . Otherwise, denote X) = Xpe Set
b. Denote x, = (xq * x /2. If J(x,) > max  [d(xq), J(x)1, go to
step e.
c. If J‘;O) <J(;1), replace ;1 by ;2. Otherwise replace ;0 by ;2.
A A l
d. If ]xl-xol > g wIX], go to step b.
e. Set J = min[Jd(x), Jxq), Ix)1  and set X to the corresponding

arugument of J.

Store new intervals
For each new interval X, if x, > J, delete X.

If w[i] < Wy and jp = Jj_ < wp, store i in Ly. Otherwise, store X in

Lg. Go to step 1.

If the list Ly is empty, go to step 13. Otherwise, delete subintervals X

for which j; > J where J(X) = [J_, Jgl-

If the list L, is empty, go to step 13. Otherwise, the midpoints of each
interval remaining 1in L; are used as the global minimums. Note that

there may exist multiple global minimums.
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13. Because Lllis empty, the global minimum is located on one of the two
boundaries of the initial interval Xo' which corresponds to a smaller J.

Numerical Simulation

From Eqs. (1), (2), (13) and (14), a linear dynamic system with additive

measurement noise can be represented by:

x(k+l) = A x(k) + B u(k)

yl{k)} = C x(k) + v(k) (37)
with
.. b
A1 0
"2 T T
_ . T _ T _
A = . B = [Bl’ BZ""’Bm]’ C = [Cl, C2,...,Cm]
0 A
m
L p
-a.T -o.T
e J cos ij e sin ij .
Ai N -c.T -s.T =L, 2,...,m (38)
-e sin w.T e cos ij

where “j’ cj are the modal frequency and damping for jth mode, m is the

number of modes, and v(k) is a white noise. To illustrate applications of the

projection filters in a single input and single output case, the actuator and

sensor are chosen and located to give
B, =[], c=00 11 §=L2...m (39)
From Eqs. (3), (37) and (39) with free pulse response, we have

Y(k) = cAK™L B + v(k)
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-0.(k-1)T
e Y sinfw (k-1)T] + v(k) (40)

W13

j=1

This allows one to form a symmetric Hankel matrix H(O) from Eq. (4) by using:
r=s, Jjj=t =1, 1i=12,..,"r (41)
From Eqs. (14) and (39),
by =cp=1, by=1¢; =0 - (42)

Then, the projection filters, Egs. (23)-(28), become

#
v (r)
e, e vie T, (43)

Vb (r) )

A (r) = Al(s), AL(r) = A (s), Vi) = vi(r)

1 3 * 2 4 * ¢ a ’

and
vits) = vl

Because the Hankel matrix is symmetric, the cost function shown in Eq. (35)
can be simplified:
1

2
JEEy v E

2

2
12 )

*Ey

(44)

with

Y #T _ 4 2
E.q = Va H(0) Vb 1 E

11 22

#T

I
E,p = vy H(0) Va

12

I #1
E21 = Vb H(O) Vb
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The first and second derivative of J can be derjved as follows:

V=2 B Byt BByt By By (45)
e E e 2P Ey B v (B2 H B By + (B30 (46)
with
e, = Vo ofh v i of
£, = 2 vEuo) (ofTy
£y, = 2 V! W) (ng)'
e = v of T e vE e ofh T w2 of) o of)

i #y' #T,' # #T,"!
Eis Z(Va) H(0) (Va ) +2 v, H(0) (Va )

" #,! #T, ! # #T,
E51 =2 (Vb) H(0) (V_') + 2 V_ H(0) (Vb ) _

b b

1}

One numerical example is illustrated by using the following conditions
(See Egs. (29)-(34)):

r=s=49, m=10, T = 0.04 sec (47)

Wy = 0.001, W, = 0.01

where Wy and w, are the accuracy of system parameters (either fregency or
damping) and the accuracy of cost respectively, used in the global minimum
optimization. Specific modal frequencies with different damping factors and

noise levels are shown in Table 1. The noise level is the ratio of the noise

standard deviation with respect to the maximum value of Y(k), i.e. the peak of



16

free impulse response. For each case, the simulation starts by forming a
Hankel matrix for this ten modes structure with a damping factor for all modes
and a specific noise level. Corresponding to each modal frequency, ten

frequency intervals are given for the projection filters:
[.1, 531, [5, 103, [10, 153, [15, 201, (20, 251, (25, 351
[35, 40], [40, 50], [50, 60], [60, 70] in rad/sec.

For each frequency interval, with a fixed zero damping factor, the projection
filters (Eq. (43)) first update their frequencies by using the interval
analysis method to find the global minimum of the cost function (shown in Eg.
(44)) within this frequency interval, The midpoint of the final frequency
interval (width is smaller than wl) is used for the first estimate of the
acutal modal frequency. With this estimated frequency, the projection filters
then update their damping factors with an initial interval from 0 to 12% by
using the same interval analysis method to attract the damping factor from the
Hankel matrix. The midpoint of the final damping factor interval (width is
also smaller than wl) is used for the first estimate of the actual damping
factor. With this new damping factor, the whole procedures are repeated
again. Since the second estimates of the modal frequency and damping factor
are quite similar to the first estimates, further estimates are prohibited.
The percentage errors for the second estimates of the modal frequency and
damping factor are then calculated for each mode and listed in Table 1 and 2.
The cost function J is plotted in Fig. 1 as the projection filters update
their frequencies with a fixed zero damping factor for both cases: no noise
and 302 noise level with zero damping factor in the data. The result shows
that the cost function is distorted by the noise, but the minimums are not

effected too much. From Table 1, as the damping factor varies from 0.3%ito
|

i
L
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10%, the errors of estimated modal frequencies fall within 2% for the noise
free case. As the noise level increases, the errors incréase proportionally
and stay within 10% for 302 noise. For a fixed noise level, the errors
increase for most of the modes as the damping factor increases. This may be
caused by the fact that the siéna] will damp out faster for higher damping
factor, especially for high frequency modes. From Table 2, similar results
are found for the modal damping errors except that the percentage "errors are
higher. For 30% noise, the modal damping errors generally fall within 100%.
For low frequency and low damping modes, the errors are higher because the
contribution of the damping 1is comparably smaller. As a result, this
numerical simulation shows that the projection filters aré a promising way for

the esimates of the modal freque:cies and dampings.

Concluding Remarks

Two developments are presented in this paper. First, projection filters
are developed for modal estimation for dynamical systems. Explicit
expressions of these single-mode filters are derived using the pseudoinverse
of the controllability and observability matrices in the general sense.
Filter parameters are initially inolemented from the analytical model and then
updated to attract the actual system modal parameters within a specific region
by passing the experimental data through filters. Second, a global minimum
optimization algorithm is developed by using interval analysis method. Giving
the first and second derivatives of the cost function, this algorithm
guarantees to find the smallest value of the cost function throughout a
specified closed region of system parameters, Numerical simulation with a
one-dimensional global 6ptimization algorithm shows that the errors of the

estimates for modal frequencies are less than 2% for low noise case and fall
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within 10% for 30% measurement noise. Several sets of single-mode projection
filters may be used at the same time for modal parameters estimates in
different ranges for the control requirements. Multi-variable global
optimization algorithm needs to be developed to imrpove the estimates for the

modal parameters.

Appendix

For the controllability matrix W and the observability matrix V shown in

~

Eqs. (15) and (16), the corresponding pseudoinverse matrices, wt and V#, can

be derived as follows. First, observe that
vy = Wt = I,. (A1)

From Eqs. (17) and (25), it iz shown that

. 2. . . . .
r o sin“(j.wT) sin(j,wT)sin((j_-j.)wT)
HORAGIEE D (et ) 4 L -

a 1 i Z xl(r) AZ(r) 2

=0

1 1 I A _— e s
(Xl(f7,- XETrT)] = le(FTViEO [sin (j;0T) + sin (j,wT) sin ((Jr‘Ji)wT)]

| e B )

* 7t [sin® (jyuT) - sin (j.aT) sin ((3=3;eT)]  (A2)

If r is even, with the aid of Egs. (21) and (29)-(31), one obtains that

[ e e ]

[sinz(jimT) + sin(j.wT) sin((j.=j;)wl)]
i=0 1 r -1
r/2-1 2 5

Z [sin(jzuT) + sin((j, = §;)eT) ] + 2 sin® (j_ ), oT)

r/2-1 _
z (4 cos
i=0 ,

erT

J
2((5;mpmuT) sin? ] + 2 sin? (3 uT/2)




—— -

5 r/2-1 »
= 2 sin®(5wT/2) [1+ T 2cosS((j, - 3./2)wl)]
r i=0 LI
2 r/2-1
= 2 sin (jer/Z) [1+ Z (1 + cos ((jr -2 ji)wT))]
i=0

2 sin? (3,uT/2) Aylr)

r ,
z [sin (JuT) = sin(geT) sin((§, - 3;)en) ]
i=0
r/2-1 »
= £ [sin(g;ul) - sin((j, - j;)ul) ]
i=0
r/2-1 5 )
= 1z [4 cos®(§wT/2) sin®((§; - jp/2)el) ]
i=0
5 r/2-1
= 2 cos“(j.wT/2) I 1 - cos((j. - Zji)wT)]

2 cos2 (jer/Z) xz(r)

If r is odd, with the aid of Egs. (21) and (29)-(31), one arrives that

T [sin? (§T) + sin(3uT) sin((, = 35)uD)]

z
1=

0

(r=1)/2
P> [sin(jimT) + sin((j, = 3;)ol)
i=0

]2

2 (r-l)/Z
2 sin® (JT/2)  © [+ cosli. = 2j;)T)]
i=0

n

2 sinz(jer/Z) xl(r)

(A3)

(A4)

(A5)
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[sin2 (jimT) - sin(jimT) sin ((jr - 3§ wh]

i

n ety

i=0
(r-1)/2 _ 2
T [sin(j,wT) - sin ((jr - ji)wT)]
i=0 !

(r-1)/2
)
i=0

2 cosz(jer/Z) [l-cos((jr‘ZJi)wT)]

2cos? (3,uT/2) Aylr) (A6)

Substitution of Egqs. (A3)-(A6) into (A2) yields

i . 2, .
MGRROE ?K]%FT [2 sin?(§.0T/2) A (r)] + 7X§%F7 [2 cos™ (3 uT/2)8,(r) ]
Similary
v vor) =1 ' (A8)
LY

Next, from Eqs. (18) and (25), it is shown that

r
V:(r) Vz(r) = - ?XI%FT iio [s1n(jin) cos(jin) + sin((jr - ji)wT)cos(jin)]

,
2 [~ sin(guT) cos(gul) + sin((3. - 3;)uT) cos(j;uT)]

! +
. 2; lr, _
1 2 i=0 (A9)

If r is even, with the aid of Eqs. (21) and (29)-(31), one obtains

n o=y

[sin(3;uT) cos(duT) + sin((§, - dj)wl) cos(j;wl) ]

i=0




" i} " + ]

|1 e i

i

[sin(jin) + sin((j, - ji)wT)] [cos(jin) + cos((j. - ji)wT)]

r

sin(jrmT)

r/2-1
sin(jrmT) [1+ © 2cos
i=0

2((3; = 3,/2)eT)]

r/2-1
sin(jer) 1+ ¢ (1+ cos((jr -2 Ji)wT)]
i=0

sin(jer) kl(r) (A10)

[~ sin(§;T) cos(jsuT) + sin (. - J;)uT)cos(jzuT)]
0

r/2-1
P [sin((jr = J5del) - sin(jin)] [cos(jin) - cos((J, - ji)wT)]

4 [sin((j./2 - ji)mT)cos(jer/Z)] [- sin(j.wT/2)sin((3; - jr/Z)wT)]

o e, .
s1n(erT) izo 2 sin ((Jr/Z - Ji)wT)
. r/2-1
51n(erT) 150 - cos((Jr -2 Ji)wT)]
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= sin(jer) xz(r) (A11)

Substitution of Egs. {(Al0) and (All) into (Al3) yields

i) vy0m) = - nﬁ?)‘ [sin(i wTIAg(r)] + HE%?T [sin(d,uT)ny(r)] = 0
(AL2)

This is also true if r is odd.
Similary, it can be proven that
Vv, () =0 (A13)
b 1
observation of Eqs. (15), (23), (A7), (A8), (Al2) and (Al3) leads to
Vv = 12 (Al14)
Similar procedures can be used to verify

Wt = 1, (A15)
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Figure Legend

Fig. 1 -Numerical example for the cost function J as a function of modal

frequency with a zero damping and two different measurement noises

(0% and 30%) for a ten-mode structure.
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